X^2+(x^2)=72

Simple and best practice solution for X^2+(x^2)=72 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X^2+(x^2)=72 equation:



X^2+(X^2)=72
We move all terms to the left:
X^2+(X^2)-(72)=0
We add all the numbers together, and all the variables
2X^2-72=0
a = 2; b = 0; c = -72;
Δ = b2-4ac
Δ = 02-4·2·(-72)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{576}=24$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*2}=\frac{-24}{4} =-6 $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*2}=\frac{24}{4} =6 $

See similar equations:

| 6x-9=4x- | | 4.9t^2+9t-450=0 | | 2r/9=9/(2r-3) | | 4^(9-3x)=64 | | a^2-10a-30=0 | | I=119x-237,524 | | 4w/1=1 | | 4-5m=5 | | (2x+2)=84 | | -63-14x=-84x | | X+(2x+2)=84 | | 2.2=3x-5.3 | | 7x-4=-2x+6 | | 8x+10=4x+20 | | 8x+10=4x+35 | | 8x+10=4x+40 | | 5(3+6x)-3=132 | | 5(3+6x)-3=32 | | 12y-12=9 | | X-18y=0 | | 20x+10=30x+20 | | 20x+5=30x+20 | | 20x+5=30x+10 | | 6m+14=86 | | 1=1+x/15 | | -6.5(x-4)=19.5 | | -11=p-18 | | 3^2=4^2=x^2 | | 15g+37=98 | | 13 17+t=29 34 | | 5n=-2n+7n | | 6-4(3x-3)=30 |

Equations solver categories